

GOVERNMENT CO-ED POLYTECHNIC, RAIPUR

DEPARTMENT OF ELECTRICAL ENGINEERING

LESSON PLAN

Session:-

Semester:- 3rd

Session start date as per University Calendar:-

Course Name:- **Electrical Circuit**

Course Code:-

Name of Subject teacher:-

Unit -1 Principles of Electrical Circuit

Class Room Instruction (CI)	No. of Periods	Laboratory Instruction (LI)	No. of Periods	Remark
1.1 Classification Of Electrical Elements: Active & Passive, Unilateral and bilateral, Independent and Dependent Source	1	1.1 Indentify the commonly used components and materials in an electric circuit. 1.2 Observe Voltage and Current in an incandescent lamp and comment on your observation. 1.3 Measure Voltage and current in a given linear electric circuit.	2	
1.2 Passive Element/Components(R,L and C) : Steady State behavior in DC Circuit	2			
1.3 Simple Series and Parallel Resistive Circuit	1	1.4 Measure current and voltage in a particular branch of the given electrical circuit using kirchhoff's Current Law.		
1.4 Ohm's Law, Kirchhoff's Voltage and Current Law	2	1.5 Measure voltage Drop in a closed loop of the given electrical circuit using kirchhoff's Voltage Law	2	
1.5 Numerical	2	1.6 Determine the current and voltage in a given electrical Circuit.		
1.6 Source Transformation	1			
1.7 Mesh & Nodal Analysis	2			

Number of periods planned (CI + LI) : 15

Number of periods actually taken :

Unit – 2 Circuit Analysis and Network Theorems

Class Room Instruction (CI)	No. of Periods	Laboratory Instruction (LI)	No. of Periods	Remark
2.1 Star Delta Transformation of Passive Network	1	2.1 Connect star connected resistance to its equivalent Delta connection and determine the equivalent resistance.		
2.2 Superposition Theorem	1	2.2 Connect Delta connected resistance to its equivalent Star connection and determine the equivalent resistance.		
2.3 Thevenin's Theorem	1			2
2.4 Norton's Theorem	1	2.3 Measure Current through and voltage across a circuit element of a given electric Circuit and verify applying mesh and nodal Analysis.		
2.5 Maximum Power Transfer Theorem	1			
2.6 Application of Theorem to Solve DC Network	6			
		2.4 Measure current in a branch of the given electrical circuit having two or more input sources using Super position theorem. 2.5 Measure load current in the load resistance using Thevenin's theorem in a given circuit. 2.6 Measure load current in the load resistance using Norton's theorem in a given circuit. 2.7 Determine the maximum power and load resistance for which circuit has maximum power using maximum power transfer theorem.	2	

Number of periods planned (CI + LI) : 15

Number of periods actually taken :

Unit – 3 Single Phase AC Circuit

Class Room Instruction (CI)	No. of Periods	Laboratory Instruction (LI)	No. of Periods	Remark
3.1 Generation of an alternating EMF 3.2 AC circuit quantities: Peak value, RMS Value and Average value of a Sinusoidal voltage waveform	1	3.1 Measure peak value, RMS value, Period and frequency of a sinusoidal voltage using CRO. 3.2 Observe the behavior of current and voltage wave form in CRO for Resistive load and comment on it. 3.3 Observe the behavior of current and voltage wave form in CRO for R-L Load and comment on it.	2	
3.3 J-operator	1			
3.4 AC Series and parallel circuits, Phasor diagrams and impedance triangle 3.5 Active, reactive, apparent power and power factor in RLC circuit.	7			
3.6 Vector representation of an alternating quantity, addition, subtraction, multiplication and division.	2	3.4 Measure voltage, current, power and power factor in a series RLC circuit and draw phasor diagram. 3.5 Measure voltage, current, power and power factor in a RLC parallel circuit and draw phasor diagram. 3.6 Determine the power and power factor in AC circuit using three ammeter methods.	2	

Number of periods planned (CI + LI) : 15

Number of periods actually taken :

Unit – 4 Series and Parallel resonance

Class Room Instruction (CI)	No. of Periods	Laboratory Instruction (LI)	No. of Periods	Remark
4.1 Definition of resonance and its importance in electrical circuit	1	4.1 Determine the current at series resonance. 4.2 Observe the variation of power factor for varying inductance for a series RLC circuit.	1	
4.2 Series and Parallel resonance: Derivation of Resonance frequency and simple numerical.	6			
4.3 Definition: Quality factor, bandwidth and selectivity in series RLC circuit.(No derivations)	1	4.3 Determine the current at parallel resonance. 4.4 Determine the impedance of a circuit during parallel resonance.	1	
4.4 Effect on current and power factor in series resonance circuit.	2			

Number of periods planned (CI + LI) : 12

Number of periods actually taken :

Unit – 5 Three phase A C circuits

Class Room Instruction (CI)	No. of Periods	Laboratory Instruction (LI)	No. of Periods	Remark
5.1 Generation of three phase voltage	1	5.1 Measure the line/phase current, line voltage/phase voltage for the given three phase load connected to a three phase source.	1	
5.2 Three phase three wire source and three phase four wire source, Phase sequence and phasor diagram	2			
5.3 Connection of three phase winding in Star/Delta	2	5.2 Measure neutral displacement voltage of the given three phase unbalanced load connected to a three phase source Measure three phase power for the given star connected load.	1	
5.4 Line and phase electrical quantity relationship: Star/Delta	4			
5.5 Three phase load: Balanced /Unbalanced	1			
5.6 Measurement of power in three phase circuits	4	5.3 Measure three phase power for the given star/delta connected load.	2	

Number of periods planned (CI + LI) : 18

Number of periods actually taken :

Number of Total periods planned : 75

Number of Total periods actually taken :

Subject Teacher :

HOD
(Department of Electrical Engineering)